ADR Cooling for IR Telescopes and Detectors

Peter Shirron, Michael DiPirro, Edgar Canavan, Michael Jackson and James Tuttle NASA/Goddard Space Flight Center

Session B

Cooling Systems for Large Telescopes

June 7, 2004

Introduction

Future Needs

- Detector Cooling
 - Up to 10 μW at 50 mK
 - Cooling to 20 mK
- Cooling for Large Telescopes
 - 10-100 mW at 4 K
- Cryogen-free, high efficiency

ADR Development

- Primarily for low temperature detector cooling
 - First flight ADR will launch on Astro-E2 Feb. 2005
- Multi-stage configuration makes operation to 30+ K possible
- Talk emphasizes
 - Configurations for low, intermediate and high T
 - Technology development needed

ADR Cycle (Carnot)

Recycling

- B=0
- $T_{salt} \le T_{sink}$

- Magnetize salt until T_{salt}≥T_{sink}
- Turn on heat switch

- Magnetize to full field
- Wait until $T_{salt} \sim T_{sink}$
- Turn off heat switch

Operational Mode

- Demagnetize until T_{salt} reaches operating point
- Slowly demagnetize to maintain stable T as salt absorbs heat

Continuous ADR

- Load is cooled by a "continuous" stage
- Stages 2-4 cascade heat to the heat sink
- Benefits
 - Solid state, no moving parts, no gravity dep.
 - Continuous cooling
 - 1-2 orders of magnitude higher cooling power per unit mass
 - Scalable to higher cooling power
 - Expandable to higher heat sink temperature

Recycling Sequence

Salt Pills/Refrigerants

Low temperature refrigerants

- Hydrated salts
- Thermal bus occupies ~25% of salt pill volume
- Very high thermal conductance even at low temperature

Salt Pill (100 gram CPA)

High temperature refrigerants

- Single or poly-crystal
- GGG, GdLiF₄, GdF₃, ...
- Transition temperatures of .5-2 K

Passive Gas-Gap HSs

NASA

Cold Side

- Traditional GGHS Has Separate Getter Attached to Warm End of Switch
- Passive GGHS Has Getter
 Housed Within Switch at Cold
 End (For ADR Use)

PGGHS Performance

- Transition temperature can be tuned by gas species and amount
 - Gas latent heat: He-3 (~.2 K), He-4 (~.8 K), H₂ (~6 K), Ne (~10 K), ...
 - Gas adsorption
 - Substrates: frozen gases, metals, zeolite, charcoal

Gas/Substrate	T _{ON/OFF}
³He/³He	0.2
³ He/H ₂ /Sintered SS	1.0
³ He/Sintered SS	4.0
H_2/H_2	5.2
Ne/Ne	11
³ He/Charcoal	13

Prototype 4-Stage CADR

- 4.2 K heat sink
- Total mass of 7.7 kg
- Magnets are fully shielded
- Operation is fully automated

4-Stage Cycling

Temperature Stability

- Temperature stability at 100 mK is 5-6 μK rms (electronics noise)
- Less stable at lower temperature
 - Transients as large as 100 μK

CADR Configuration for Constellation-X

- Basic 4-stage CADR for 0.05 to 6 K operation
- Additional stage cools SQUID amplifiers and 1 K shield

Constellation-X Cryogenic System Layout

- X-Ray Microcalorimeter Spectrometer (XMS) Detector assembly
 - 32 x 32 TES Detector arrays and first stage SQUID amplifiers at 50 mK
 - Second stage SQUID array amplifiers at 1 K
- Continuous ADR (CADR)
 - ~10 kg
- Cryocooler
 - 200 mW at 18 K
 - 20 mW at 6 K
 - Goal of 4 K operation

4-30K ADR Configuration

- Optimal system uses 8 stages to span 4-30 K
 - Two banks of magnets synchronously driving 4 stages each
- Stages connected by passive gas-gap heat switches

Cooldown and Cycling

- Model run for cooling powers up to 10 mW
- Efficiency ~35% (of Carnot)

Cooler Comparison

Courtesy of Dean Johnson/JPL

Toroidal Configuration

- Magnetically self-shielding
- Low mass per cooling power

Technology Development

- Magnets operate at heat sink temperature
 - Operation above 5-6 K operation requires shift from NbTi
 - Possibilities include Nb₃Sn, MgB₂, HTS materials
 - Lead conduction dominates thermal design -> low current
 Minimize current and number of magnets
 - Nb₃Sn and HTS difficult to fabricate in small cross-section
- SBIR with Superconducting Solutions, Inc. to develop 3-4 T magnets working at 12+ K using Nb₃Sn
 - Uses 0.2 mm wire in "react and wind" technique

Summary

- ADRs are very versatile
 - Wide temperature range: below 50 mK to above 30 K
 - ADRs are ideal for space use
 - High efficiency compared to other coolers
- Multi-stage architecture
 - Increases performance
 - Lower mass, higher cooling power
 - Lower operating temperature and higher sink temperature
 - Allows cooling stages to be distributed
- Combined high and low temperature systems will provide cooling solution for detectors and telescope
- Presently working to implement a 4-10 K version of multi-stage
 ADR to be coupled with existing 50 mK system